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Non-orthogonal separable coordinate systems for the flat 
4-space Helmholtz equation 

E G Kalninst and Willard Miller JrS 
t Mathematics Department, University of Waikato, Hamilton, New Zealand 
$ School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA 

Received 25 April 1978, in final form 23 November 1978 

Abstract. A complete classification of separable non-orthogonal systems for the flat space 
Helmholtz equation is given. The relation between separability conditions for the various 
systems and the classification of abelian sub-algebras of the Euclidean symmetry algebra 
e(4) is explicitly indicated. 

1. Introduction 

This paper is a direct application of the results of Boyer et a1 (1978) in which were 
classified all complex Riemannian spaces for which the Hamilton-Jacobi equation 

g k j a , k  wax, w = E, E Z O  
k , j =  1 

admits a separable solution W = E",=, W'k'(x ' ) .  Furthermore, additional conditions to 
be satisfied by the metric tensor gki were deduced such that the associated Helmholtz 
equation 

be also separable. Here we find all possible non-orthogonal systems in flat space for 
which the Helmholtz equation admits a separable solution J, = r I ;= l+ j (x i )  and relate 
these systems to Cartesian coordinates. 

Thanks to the work of Eisenhart (1934) orthogonal separability for Riemannian 
spaces is rather well understood. An orthogonal system separates the Hamilton-Jacobi 
equation if and only if the metric tensor is in Stackel form with respect to that system. In 
addition the system separates the Helmholtz equation if and only if the off diagonal 
elements of the Ricci tensor vanish. (The orthogonal separable systems for the flat 
space Helmholtz equation are classified in Kalnins and Miller (1978) together with their 
defining operators in the enveloping algebra of ~ ( 4 )  and their relation to Cartesian 
coordinates.) 

However, non-orthogonal separable systems are never in Stackel form and the Ricci 
condition is no longer necessary and sufficient for Helmholtz separation. In general, 
relatively few examples of such systems have been found and the theory is not well 
understood. The detailed results presented here for flat space indicate the complexity 
of a general solution of the problem for arbitrary Riemannian spaces. Note that our 
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1130 E G Kalnins and W Miller 

results can easily be adapted to determine all separable systems for the Helmholtz 
equation on any real flat space, e.g. the real Klein-Gordon equation, see Kalnins and 
Miller (1978). Similarly as we shall show the results also yield all R -separable solutions 
for the real or complex Schrodinger equation with constant potential 

i8& = (-a,.. - a y y  + A ) &  (1 .3)  
The classification of separable systems given in Boyer et a1 (1978) is based on the 

number of ignorable and essential variables. A variable x i  in a separable system is 
termed ignorable if Jigjk = 0 for 1 s j ,  k ~ 4 ,  i.e. the metric tensor is independent of x i .  
Otherwise the variable x' is essential. If the separated ordinary differential equation in 
the essential variable x i  is first order then x i  is of type 1 ,  if second order then x i  is of type 
2. 

To explain our method and to fill a gap in the classification of Boyer eta1 (1978), we 
treat one example in detail. We consider a separable system for the Hamilton-Jacobi 
equation ( 1 . 1 )  with two essential variables of type 2 ( x l ,  x 2 ) ,  one essential variable of 
type 1 ( x 3 ) ,  and one ignorable variable (x4). (This is called a type G equation.) With 
W = W"' (x ' ) ,  W, = aiW, we can write the separated ordinary differential equa- 
tions in the form 

w:+fl W :  +Alal +,i2b1 - C ~ E  =al = o 

(1 .4)  

w4 = A 3  

where h, ai, bj, ci are functions of x i  and A I ,  A z ,  A3, E are the separation constants. 
Making the change of variable x i  = X'(2') if necessary, we can assume without loss of 
generality that al = bz = u3 = 1 .  To relate ( 1 . 1 )  with (1.4) one looks for functions 
O j ( x l , .  . . , x 4 )  such that 

3 4 1 Oj@j= 1 g"W;W,-E, 
j = l  i . j = l  

( 1 . 5 )  

identically in the separation constants. (In particular the coefficients of A l ,  AZ,  A 3  should 
vanish in ( 1 . 5 )  and the coefficient of E should be - 1 ) .  It is easy to verify that condition 
( 1 . 5 )  determines the O j  in an essentially unique fashion and leads to the Hamilton- 
Jacobi equation 

[G3lQ-l[(azb3-1)(W:+fi  w t ) + ( b i - b 3 ) ( W ~ + f z W ~ ) + ( 1  -azbdW3W41=E, 
(1.6) 

The most general metric tensor yielding separation of this type can now be read off from 
(1.6).  

The analysis for the Helmholtz equation (1.2) is very similar. Here one looks for 
separable solutions 9 = 

Q = c i ( ~ z b 3 - 1 ) + ~ z ( b i - b 3 ) + C j ( l - ~ z b l ) .  

@') (x j ) .  The separated equations are given by 

q!\)+ h l ~ ! l ) + ( f l ~ : + ~ l ~ l  +hzbl  -clA )W=CD~W) = o 
q ( Z )  22 + h z ~ ~ z ~ + ( f z ~ ~ + ~ 1 ~ 2 + ~ 2 b 2 - ~ 2 ~ ) ~ ~ Z ~ ~ ~ z ~ ~ 2 ~ =  o 
'Pi3'A3 + ( A l a 3  + A Z ~ ~ - C ~ A ) ' P ) =  @ 3 q ( 3 '  

(1 .7)  
= O  
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where 9;;) = a;9"). To relate (1.2) with (1.7) one looks for functions Oi(xl, . . . , x4) 
such that 

Comparing the coefficients of the second derivative and the constant terms on both 
sides of (1.8) we find the same solution for the Oi and the same metric tensor (g") as can 
be read off from the Hamilton-Jacobi equation (1.6). However, comparison of the 
coefficients of first derivative terms leads to an additional condition on the metric 
tensor. (For orthogonal metrics this is called the Robertson condition and amounts to 
the requirement that the non-diagonal elements of the Ricci tensor vanish, i.e. Rii = 0 
for i f j ,  (Eisenhart 1934). For non-orthogonal metrics, it was shown in Boyer et a1 
(1978) that the Ricci tensor condition is not always equivalent to Helmholtz separabil- 
ity.) In this example the additional Helmholtz separability condition is 

i.e. ajk In r =  0, 1 s j < k 4 3, and it can be verified that this is equivalent to the 
requirement Rik = 0, j # k. 

In Boyer e ta /  (1978) we inadvertently omitted the general system [G3], listing only 
the special cases [Gl](b3 = 0) and [G2](bl= a2 = 0). However, as follows from the 
preceding paragraph, the statements of all theorems in that paper remain valid. 

In particular it is true that any separable system for the flat space Hamilton-Jacobi 
equation automatically separates the Helmholtz equation. Thus to find the possible 
non-orthogonal separable flat four-space metrics we need only examine each of the 
general types of separable metric for a Riemannian space and then require that the 
curvature tensor corresponding to this metric vanish identically. These curvature 
equations are frequently very difficult to solve. Fortunately, the conditions can be made 
tractable by utilisation of the Euclidean symmetry algebra 4 4 )  of the Helmholtz 
equation. In particular we show that a knowledge of the abelian sub-algebras of ~ ( 4 )  
with dimensions 1, 2 and 3 enables us to determine the possibilities for ignorable 
variables corresponding to the metrics and thus to greatly simplify the curvature 
equations. 

The classification of ~(4) abelian sub-algebra is carried out in § 2, and in § 3 all flat 
space separable metrics are determined. Finally in § 4 we relate each of the separable 
coordinate systems to Cartesian coordinates. Again our knowledge of ~ ( 4 )  is helpful in 
relating each of the ignorable variables to Cartesian coordinates. Furthermore, we 
show explicitly that the separable solutions for each coordinate system are charac- 
terised by a commuting triplet of at most second-order operators in the enveloping 
algebra of ~ ( 4 ) .  The practical and theoretical significance of this operator charac- 
terisation for the (special function) solutions is discussed in Miller (1977). 

Finally, we mention some of the most interesting features of our results. In Kalnins 
and Miller (1979) the much easier problem of classifying all non-orthogonal separable 
systems for the flat 3-space Helmholtz equation was solved and we found that each such 
system corresponded to an R -separable system for the Schrodinger or heat equation 

ir/ll = -a,,$ +A+.  

Similarly, in four dimensions we find that almost every non-orthogonal separable 
system for the Helmholtz equation is associated with an R-separable system for (1.3) 
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and that all such systems for (1.3) can be obtained in this way. Indeed our more 
sophisticated techniques enable us to find many previously unknown R -separable 
systems for (1.3), particularly those of types [G2] and [El]-[E3]. However, there is a 
single non-orthogonal system (4.34) that does not correspond to the heat equation. The 
significance of this singular system is a topic for future research. 

Contrary to a remark in Boyer et a1 (1978) the detailed results in that paper and in 
the present paper agree with the general theoretical framework for variable separation 
presented in Woodhouse (1975). However, the definition of variable separation used in 
Dietz (1976) and Collinson and Fugbre (1977) is only a special case of that presented 
here. 

2. Abelian sub-algebras of ~ ( 4 )  

The symmetry algebra of the flat space Helmholtz equation 

is ~ ( 4 ) ,  the Lie algebra of the complex Euclidean group. A basis for 4 4 )  is given by 

pj  = a,i, j =  1,. . . , 4  
(2.2) 

l s k < 1 ~ 4  k 1 Ikl= z a,l - z a,., I l k  = -41, 
and the commutation relations are 

(2.3) 

where Sjk is the Kronecker delta. For equation (2.1) the symmetry algebra can be 
identified with the algebra of Killing vectors for the flat space metric. In the general 
classification of separable coordinate systems for four-dimensional Riemannian mani- 
folds given by Boyer et a1 (1978) the number of ignorable variables in a separable 
system figured prominently. (The variable x i  in a coordinate system {xl, x 2 ,  x 3 ,  x4} is 
ignorable if a,igkl(x) = 0, 1 S k, 1 S 4, i.e. a,) is a symmetry of the associated Helmholtz 
equation.) It is easy to see that a system with m ignorable variables is associated with an 
m-dimensional abelian sub-algebra of the symmetry algebra Y of the associated 
Helmholtz equation. Moreover, since we identify two systems if one can be obtained 
from the other by an action of the symmetry group, to classify all possibilities for 
ignorable variables it is necessary and sufficient to determine all equivalence classes of 
abelian Y-sub-algebras under the adjoint action of 9. 

We now list the classes of abelian sub-algebras for ~ ( 4 ) .  The one-dimensional 
sub-algebras are given in table 1. In each equivalence class we exhibit one represen- 

Table 1. One-dimensional sub-algebras of c(4). 

(1) K3+bJ3, b € g  (6) P3+iP4 
(2) Kl+iKz (7) Ks - J3 + P1 + iPz + b(P1- iPz) 
(3) K1 + iK2 + + i J 2  (8) K1 + iK,+ Pi + iP2 
(4) K 3 + b ( J 1 + ~ Z ) . b f O  (9) K1 + iKz+ J1+ iJ2 + PI + iPz 
( 5 )  Pl 
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tative element. To present the results in their simplest form it is convenient to introduce 
another basis for the O(4) subalgebra of ~ ( 4 ) .  We set 

J3 = - J -1 

K -1 
JI = $(I23  - 1141, 

K -1 

[Jj, JkI = 1 EjkJI ,  [Kj, K k ]  = EjclK/, 

2 - Z(113 +I2419 

K -1 
3 - 2(112 + 1 3 4 ) ~  2 - 2(113 -124) ,  1 - 2(123 + 1 1 4 ) ,  

(2.4) 
I I 

[Jj, K k ]  = 0. 

Here Ejkl is the completely skew-symmetric tensor such that €123 = +1. 
Suppose U is an ignorable variable belonging to the separable system {U, x 2 ,  x3, x4}. 

Then we can assume that the symmetry operator L = a, is identical with one of the nine 
operators listed in table 1.  We examine the possibilities and relate U to the standard 
Cartesian coordinates {z’ ,  z2 ,  z 3 ,  z4} in which the metric is 

4 

ds2= (dz’)’. 
j = l  

If L =PI then we can set z 1  = U, z k  = z k ( x ) ,  lc = 2 ,3 ,4 .  Thus 

4 

k = 2  
ds2=du2+ (dzk)’ 

If L =P3+iP4 then z 3  = u -U, z 4 = i ( u  + U )  where U = u ( x ) ,  z k  = z k ( x ) ,  k = 1 , 2  and 

(2.6) ds2 = -4du do + (dz’)’+ (dz’)’. 

Notice from (2.6) that the system {U, x} is necessarily non-orthogonal. No matter what 
coordinates x are chosen the term du du cannot vanish. Notice also that there is no 
(du)’ term in the metric. These and similar remarks for the remaining seven operators 
will prove to be of great utility in the classification of separable systems for (2.1). 

In table 2 we designate an ignorable coordinate U by ‘N’ if it is not possible to select 
this variable so that all cross terms involving du vanish from the metric. Thus such 
variables appear only in non-orthogonal separable systems. All other ignorable 
coordinates are designated ‘0’ since they may occur in orthogonal separable systems. In 
addition we point out the two non-orthogonal coordinates in which there are no (du)’ 
terms in the metric. The variable u is not unique and may be replaced by U ’  = U +f(x) 
for arbitrary f. 

The non-orthogonal ‘heat’ type variable (6) will prove to be of great interest in the 
following sections. Note that in terms of the variables (2.6) the effect of the splitting off 
of U, i.e. assuming a solution of (2.1) in the form = @(z’, z2 ,  U )  exp(ipu) is to reduce 
(2.1) to the heat (or Schrodinger) equation 

ips,@ = (at1 +&)@-A CP. (2.7) 

A representative basis for each equivalence class of two-dimensional abelian 
subalgebras of 44)  is listed in table 3. Again we indicate which associated ignorable 
variables are intrinsically non-orthogonal. 

The corresponding results for three-dimensional abelian sub-algebras are listed in 
table 4. Sub-algebra (4) does not lead to separable coordinates because the three Lie 
derivatives are functionally dependent. 
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Table 2. Metria and coordinates associated with ignorable variables. 

Diagonal 
operator Coordinates and metric Remarks 

(l), b # f 1 z = v l  cos au, z z  = ul sin au, 
z 3  = v z  cos [ @ ( U  + w)], z4 = v 2  sin[p(u + w)]. 

d s 2 = ( v ~ a 2 + v ~ ~ 2 ) d u z + 2 v ~ ~ z d u  dw 
+v:p2 dw2+dv:+du:. 

dsz=dvz+v2du2+(d~3)2+(d~4)2.  
(2)’ z1 = vlu,  z2 = -ivlu +2v2. N, 

z 3  = vzu + 03, z4 = -iv2u - iv3 - 2vl. 
(3) z 1  = -ivlu -3 eyluz +ivz - i  e”’, 0 

z 2 =  -v1u-+eU1u2+v3, z 3 =  vl+eylu. 
~ ’ + i z ~ = i e ~ ” ’ ~ ( v ~ ( + + 2 v ~ ) ,  N 

z I - i z 4 = e - i u / Z  ( V I U  +2VZ). 
(5) equation (2.5) 0 
(6) equation (2.6) N, 

(7) z 1  = -(1+ b)u  + v l ,  z2 = i(b - l ) u  + v2,  
z3 = v 3  cos U, z 4  = v 3  sin U. 

(8) z1  = -(I + vl)u + v2, z z  = i(vl  - 1)u -ioz, 
~ ~ = - f u ~ + v 3 ,  z 4 =  -4u2+2vl-iv3. 

(9) z2+iz1= -XU, z2-iz1= -2vlu+2v2+2iu3/3, N 
z 3  = v1 - iu2.  

N 

a = (1 + b)/2, p = (1 - b)/2, 

(l), b = 1 z 1  = v cos U, z2 = v sin U, 0 

no (du)’ term 

zl - izZ=- ib- lv l  e- tu /2  z1+iZ4=-b-1vl  eiu/2, 
(4) 

no (du)’term 
N 

N 

Table 3. Two-dimensional abelian subalgebras of 44) .  

(1) J3,K3 
(2) J i + J z ,  4 
(3) J3+K3, P4 
(4) J3 + K3, P3 +iP4 
( 5 )  K1 -iKz, P3+iP4 
(6) J1+& K1 +iK2 
(7) K1+ iK2, J1 + iJz + P3 - iP4 
(8) K1+ iKz +Jl + iJ2, J1 + i J 2  + P4 
(9) K1 + iK2 + J1 + iJ2, P4 

( 10) -Kl + iKz + Jl + U,, P3 + iP4 
(11) PI, Pz 
(12) P1, P3+iP4 

(14) P4, K1 +iK2 +Jl + iJ2 + P1 + iP2 
(15) P3 + iP4, J3 + K3 - P3 + iP4 
(16) P3 + iP4. -K1 + iK2 + J, + ilzwP1 + iPz 
(1 7) P3 + iP4, - K1 + iK2 + JI + iJ2 - P3 + iP4 
(18) P3 + iP4, -K1 + iK2 - P3 + iP4 
(19) P3+iP4, -Kl+iKz-Pl+iPz 
(20) P3 + iP4, P1 - iP2 

(22) K1+ iK2 + P1 + iPz, Jl - iJ2 +PI - iPz 
(23) -K1+iKz+J1+iJz-P3+iP4, 

P3+iP4+aP2, a s 0  

(13) P4,13+K3+bP3, b # O  

(21) K3 + J3 + bP3, P4 + cP3, bc # 0 

0 
N 
0 
N 
N 
0 
N 
N 
0 
N 
0 
N 
0 
0 
N 
N 
N 
N 
N 
N 
N 
N 
N 
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Table 4. Three-dimensional abelian sub-algebras of r(4). 

(1) P1, P2, P3 0 
(2) P1, Pz, 134 0 
(3) P3+iP4, K1-iK2,J1+iJ2 N 
(4) P3 + iP4, P1 + iP2, K1 - iK2 - 
( 5 )  P3+iP4, K1-iK2. Jl+iJ2-P1-iP2 N 
(6) P3+iP4, -Z14+iZ13, Jl+iJ2+P2 N 
(7) P3 + iP4, Pz,  -114 + iZ13 N 
( 8 )  P3 + iP4, PI, P2 N 
(9) P3 + iP4. P1, 124 - iZ23 N 

(10) P3+iP4, PI, 124-i123+P3-iP4 N 
( 1 1 ) P3 + iP4. P1 + iP2, -Kl + iK2 - P3 + iP4 N 
(12) P3 + iP4, -K1 + iK2 - PI+ iPz, J1 + iJ2 - P1 - iPz N 
(13) P3 + iP4, Pl - iP2, Jl + U 2  + PI+ iP2 + P3 - iP4 N 
(14) P3+iP4, P2, -Kl+iK2+Jl+iJ2-P3+iP4 N 

Finally, there is only one four-dimensional abelian sub-algebra of ~ ( 4 )  up to 
equivalence. One representative has basis P1, P2, P3, P4 and corresponds to Cartesian 
coordinates. 

3. Classification of non-orthogonal flat space forms for which 414 = A+ is separable 

In this section we classify the inequivalent non-orthogonal differential forms for which 
(2.1) admits a separation of variables. We showed in Boyer et a1 (1978) that for any 
four-dimensional Riemannian manifold the possible separable coordinate systems are 
of eight types depending on the numbers of ignorable variables. Here we determine the 
number of non-orthogonal separable forms of each type which occur in flat space. 

3.1. Forms of type A: four ignorable variables 

There is only one four-dimensional sub-algebra of c(4), the Lie algebra of the 
translation group, and this sub-algebra corresponds to Cartesian coordinates. Hence 
there is no truly non-orthogonal separable system of this type. 

3.2. Forms of type B: three ignorable variables 

The possible separable systems of this type correspond to the three-dimensional abelian 
sub-algebras of 4 4 )  listed in table 4. Sub-algebras (1) and (8) are essentially equivalent 
to Cartesian coordinates and sub-algebra (2) corresponds to the orthogonal cylindrical 
coordinates. The remaining ten sub-algebras yield non-orthogonal coordinates, all of 
heat type. These coordinates can be obtained from taoles 1 and 2. For example, 
sub-algebra (3) corresponds to the system 

z =w(u1-u*), 
z = -iwuluz+ u3,  

1 z z  = -iw(ul+ uz), 

z 4 =  wuluz+2w +iu3, 3 

and sub-algebra (1 1) corresponds to 

z 1  -iz2 = iu: +2uz, 1 2  z +iz = w ,  

z 3 + i t 4 = 2 u l ,  z -iz =-iulw+2u3. 3 4  
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3.3. Forms of type C: two ignorable variables with two essential variables of type 2 

Here the Hamilton-Jacobi equation has the form 

(K1 -Kz)-'[ W:+ W:+(el+e2) W:+2(h1+ hz) W3 W4+(fi + fz) W f l =  E, (3.1) 

where Wi = a,i W and Ki =&(xi), ei = ei(xi), etc, and the condition of Helmholtz 
separability is 

8 2 ~  1nW1 -Kdz/[(e1 + e d f l  + f d  - ( h i  + hd21) = 0. (3.2) 

Rather than solve this condition directly we observe that for flat space the two Lie 
symmetries L1 = a x 3  and Lz = 8,. corresponding to the ignorable variables x3 and x4 are 
taken from the list of commuting pairs of symmetries in table 3. For each pair of 
symmetries from this list there are constraints on the differential form ds2 and the way in 
which the differentials dx3 and dx4 appear in it. If we run through all the pairs in table 3 
and look for differential forms of type C which satisfy the Helmholtz separability 
condition we obtain only two classes 

I dsz = (K1 -Kz)[(dx')'+ ( d ~ ~ ) ~ ] + 2 d x ~  dx4-[( f i  - fz)/(Ki -Kz)](dx3)' 

I1 ds2=(K1-Kz)[(dx1)z+(d~2)2]+2K~Kz dx3 dx4 

- [(fi - f z ) / W i  - K ~ ) I ( K ~ K Z ) ~ ( ~ X ~ ) ~ .  

For metria of class I with K1, KZ not constant we can take 

dsz = (x' - xZ)[X,(dx ')' + X z ( d ~ ' ) ~ ]  + 2 dx3 dx4 + [ (f 1 - fz)/(xl - X ' ) ] ( ~ X ~ ) ~ .  

The flatness condition Rlzzl = 0 implies (see Eisenhart (1949) for definition of the 
curvature tensor), 

Xi' = a(x')' + bx' + c, -Xi1 = a(x')' + bx2 + c. 

The further condition R1442 = 0 implies (fl- f2)/(xi -x2) = x1 +x2.  The condition 
RIM1 = 0 is satisfied if a = 0. We then obtain the two differential forms 

dsz = (X - x ')[ (dx ' ) ' / x  - (dx ')'/x '1 + 2 dx dx + (X ' + x ')(dx4)', (3.3) 

dsZ=(~'-x2)[(dx')Z-(d~z)z]+2 dx3 ~ X ~ + ( X ~ + X ' ) ( ~ X ~ ) ' .  (3.4) 

Note: If f i  =fz = 0 then the metric simplifies to ds2 = dw2+2  dx3 dx4 where 
dw2(x1, x2) is a metric in two-dimensional flat space. We shall not trouble to list these 
well-known metria. 

If Kz = 0 in metr ia  of type I we have the differential form 

ds2 = (dx ')' + Xi (dx')' + 2 dx dx4 + [ (fi - fz)/Xi](dx3)'. 

We have the flatness condition R1332 = 3f;X;/x: = 0 which requires X1 = 1. The 
remaining non-trivial flatness conditions reduce to 

which gives the metric 

dsz = (dx')z+(dx2)2+2 dx3 d ~ ~ + ( a x ' + b ~ ~ ) ( d x ~ ) ~ .  (3.5) 
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For metrics of type I1 if K1, Kz are not constants then we may write 

dsZ=(~1-~Z)[Xl(d~1)Z+X2(d~2)2]+2~1~Zd~3d~4 

-t (X1X2)2[(fl - f M X 1  -x2)1(dx3)2. 

The flatness condition R I Z Z ~  = 0 requires 

Xi1 = a(x')'+ bx'+c, -XT1 = a ( x 2 ) 2 + b x 2 + ~ .  

The additional condition 
R1332 = 0. This is equivalent to the equation 

= 0 implies b = c = 0 .  Finally we have the condition 

which has the solution fl = 1/(x1)*, fz = 1/(x2)'. We thus have the metric 

ds2 = ( x '  - x ~ ) [ ( ~ x ~ / x ~ ) ~ - ( ~ x ~ / x ~ ) ] +  ~ x ' x '  dx3 dx4 + (x '  + xZ)(dx3)'. (3.6) 

If Kz = 0 in differential forms of type I1 it can be verified that the only possible metrics 
have three ignorable variables. 

3.4. Forms of type D: two ignorable variables with one essential variable of each type 

There are two kinds of systems of this type. For the first of these type [ D l ] ,  the 
Hamilton-Jacobi equation is 

(K1 -K2)-l(  W: + 2 W2 W3 +2b2 W2 W4+ d l  W:+2( f1 + f ~ )  W3 W4+ el W:] = E. (3.7) 

Instead of solving the Helmholtz separability condition 

dxix2 In((K1 -Kd2/[2b2(f1 +fd - el - b:dllI = 0, 

we look for flat space metrics for which the two Lie symmetries L1= 132 and L2 = dx4 are 
taken from the list of commuting pairs of symmetries in table 3. This imposes 
conditions on the differential form in addition to the Helmholtz separability condition. 
Proceeding through the list of two dimensional abelian sub-algebras we find that there 
are no flat space coordinate systems of this type. 

For systems of the second kind the Hamilton-Jacobi equation is 

(K1-Kz)-'(W:+2W2W4+(dl+d2)W:+2f1 W3W4+el W:)=E. (3.8) 

The condition of Helmholtz separability is 

dxix2 ln[(K1 -&)'/(dl + dz) ]  = 0. (3.9) 

This condition is satisfied if K = K1 - Kz, and d = dl + dz are each a function of a single 
variable only. We consider the various possibilities: 

The corresponding differential form is 

K[(dx')' + d-'{( f? -el d)(dxZ)' + (dx3)' - 2f1 dx2 dx3 + 2 d dx2 dx4}]. 
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The non-trivial flatness conditions R 2 3 3 2  = R1221= R 1 2 2 3  = 0 admit the solutions 

(i) e l = - a ,  f 1 =  0, K2 = d2, a ZO, 

(ii) el = 0, f1= 0, K 2  = d2 or d = 1. 

For the solutions (i) the function K2 satisfies 

KS = aK2-$Kiz/Kz = 0, 

which has the solutions 

K2 = sec2(& x2), exp(2& x2). 

We obtain the differential forms 

ds2=(dx3)2+[l+(x2)2](dx1)z+2dx2dx4+[l+(~2)z]-1(~1 dx2)2, (3.10) 

d s ’ = ( d ~ ~ ) ~ + x ~ ( d x ~ ) ~ + 2  dx2dx4+(x1 dxz)2/x2. (3.11) 

In the case of solutions of type (ii) we find Kz = 1 / (~ ’ )~ ,  which gives the differential 
forms 

ds2= (x2 dx1)2+ax1(dx2/~2)2+2 dx2 d ~ ~ + ( d x ~ ) ~ ,  (3.12) 

ds2= (xz dx1)2+ax1(dx2/~2)2+2 d x ’ d ~ ~ + ( x ’ d x ~ ) ~ .  (3.13) 

(b) K = K~(x’), d = dl(x’). 

The non-trivial flatness conditions are RI331 = R2332 = R12z1 = RI223 = 0 and yield the 
forms 

ds = [ 1 + (x ’)’I[ (dx I)’ + (x dx 3)2] + 2 dx2 dx4 + (X dx 2)2/[ 1 + (X 2)2] (3.14) 

dsz=x2[(dx1)2+(x1 d ~ ~ ) ~ ] + 2 d x ~ d ~ ~ + ( ~ ~  dx2)z/x2 (3.15) 

dsZ=(x2)z[(dx1)2+(x1 dx3)’]+2 dx2dx4 (3.16) 

ds2 = (x2)2[(dx1)2+ (dx3)’]+2 dx2 d ~ ~ + a x ~ ( d x ~ / x ~ ) ~ .  (3.17) 

All additional forms of this kind correspond to type B. 

3.5. Forms of type E: Two ignorable variables with two essential variables of type 1 

There are three kinds of system to consider. For the first of these, type [El], the 
Hamilton-Jacobi equation is 

(K1-K2)-’[2al WI W ~ + ~ W I W ~ + ~ ~ Z W Z W ~ + ~ W ~ W ~ + ( C I - C ~ ) W : ] = E .  (3.18) 

The relevant condition for Helmholtz separability is arlr* In[(K1 - K2)/(a1 - a ~ ) ]  = 0. 
There are two possible solutions to this condition: (a) K1 - K2 = al - az, (b) K 1  - K2 = 
(ala2)-’(a1 - a2). For systems of kind (a) the non-trivial flatness conditions are 
R1224 = R2114 = RIZZI = 0. We obtain the two metria 

dsZ = 2 dx3(dx’ -dxZ) + 2 ~ x ~ [ ( x ’ ) ~  dx2 - ( x ~ ) ~  dx’], (3.19) 

ds2 = [A (X + x 2, + B (X + x ’)/(x - x’) + C/(X - x’)] 

X (dx - d ~ ~ ) ~  + 2 dx 3 ( d ~  ’ - dx 2, + 2 ~ x ~ ( x  dx2 - x2  dx l). (3.20) 
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For systems of kind (b) the flatness conditions are RI223 = Rz113 = Rlzzl = 0. The 
corresponding differential form is 

+ 2 dx3(xZ dx' - x l  dxZ)+2 d ~ ~ ( d ~ ' - d ~ ' ) .  (3.21) 

For systems of type [E21 the Hamilton-Jacobi equation is 

(K1 -K2)-'[2 W1 W4+ 2 Wz W3 +2b2 WzW4+ ( ~ 1 - c ~ )  W f ] = E .  (3.22) 

For Helmholtz separability we must have either (a) KZ = 0 or (b) K1 = 0. For systems of 
kind (a) the flatness conditions are R I Z Z ~  = R2113 = R1221 = 0. The corresponding 
metric has the form 

1 

+ 2 dx 3 ( d ~ 2  - x dx I)  + 2 dx dx4]. (3.23) 

There are no new forms of type (b). 
For systems of type [E31 the Hamilton-Jacobi equation is 

(Kl - Kz)-'(2 w1 w4 + 2 wz w, + c1 w: + CZ w:, = E. (3.24) 

The condition for Helmholtz separability is (without loss of generality) KZ = 0. The 
flatness conditions Rz113 = RlZz1 = 0 then lead to the possible forms 

ds2=(x2  d ~ l / ~ l ) ~ - ( d ~ ~ ) ~ + 2  d x ' d ~ ~ + 2 ( x ~ ) ~ d X ~ d ~ ~ ,  (3.25) 

ds2 = (x' dx ')' - (X dx2)' + 2 dx dx4 + 2 dx2 dx3, (3.26) 

ds2=x2(dx1/x1)2+x~(dx2)2+2dx1 d ~ ~ + 2 ( ~ ~ ) ~ d x ~  dx3, (3.27) 

d s 2 = ~ 2 ( d x 1 ) 2 + ~ 1 ( d ~ 2 ) 2 + 2 d ~ 1  dx4+2dx2dX3, (3.28) 

dsz=x2(dx1/x1)2+2dX1 d ~ ~ + 2 ( x ~ ) ~ d x ~ d x ~ .  (3.29) 

This completes the list of separable metrics of type E. 

3.6. Forms of type F: One ignorable variable with three essential variables of type 2 

These forms are all orthogonal. 

3.7. Forms of type G: One ignorable variable with one essential variable of type 1 and two 

There are three cases to consider. For the first of these, type [Gl], the Hamilton-Jacobi 
equation is 

(3.30) 

where Q = K1 - K z  + g3(11- l ~ ) ,  g3 f constant. The conditions for Helmholtz 
separability are 

of type 2 

a-'[ W :  + W: + 2(11- 12) W3 W4 + (ml - md W:] = E, 

1n(Q/l1 - 12) = 0, 1 S i < j ~ 3 .  
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They are satisfied modulo suitable redefinitions if K1 = K2 = 0. If 11 and 12 are not 
constants then the flatness conditions R I 3 3 2  = Rlzzl = R1331= 0 yield the following 
differential forms: 

ds2=[1 + ( x ~ ) ' ] ( c ' ( x ~ - x ~ ) [ ( ~ x ~ ) ~ / x ' ( x ~ -  1)-(dX2)'/X2(X2-1)]} 

+ 2  dx3 d ~ ~ + ( x ' + x ~ ) ( d x ~ ) ~ / [ l  + ( x ~ ) ~ ] ,  (3.31) 

ds2=[1 + ( X ~ ) ~ ] { C ~ ( X ' - X ~ ) [ ( ~ ~ ' / X ~ ) ~ - ( ~ X ~ / X ~ ) ~ ] } + ~  dx3  dx4 

+ ( x i  +x2)(dx3)2/[1 + (x3)2~, (3.32) 

ds2 = c2x3(x1 - x ' ) [ ( ~ ~ ' ) ~ / x ' ( x '  - 1) - (dxz)2/x2(x2 - l)] 
+ 2  dx3 d ~ ~ + ( x ~ + x ' ) ( d x ~ ) ~ / x ~ ,  

ds2 = c2x3(x1 - X ' ) [ ( ~ X ' / X ' ) ~ - ( ~ X ~ / X ~ ) ~ ]  

+ 2 dx dx4 + ( x  + x 2 ) ( d ~  3 ) 2 / x  3, 

ds2 = c ~ ( x ~ ) ~ ( x '  -x2) [ (dX1)2 /X1- (d~2)2 /~2]  

(3.33) 

(3.34) 

+ 2  dx3 d ~ ~ + ( x ' + x ~ ) ( d x ~ / x ~ ) ~ ,  (3.35) 

ds2 = c ' ( x ~ ) ~ ( x '  - ~ ~ ) [ ( d ~ ' ) ~ - ( d x ' ) ~ ] + 2  d x 3  dx4+ (x '  + x * ) ( ~ x ~ / x ~ ) ' ,  (3.36) 

(3.37) 

(3.38) 
ds2= ( x ~ ) ~ ( x ' - x ~ ) [ ( ~ x ~ ) ~ / x ' ( x ~ -  1)-(dx2)2/X2(X2-l)]+2 dx3 dx4, 

ds2 = ( x ~ ) ~ ( x '  -x ' ) [ (~x ' /x ' )~-  ( d x ' / ~ ~ ) ~ ] + 2  dx3 dx4, 

ds2= ( x ~ ) ~ ( x ' - x ~ ) [ ( ~ x ' ) ' / x ~ - ( ~ ~ ~ ) ~ / x ~ ] + ~  dx3 dx4, (3.39) 
ds2 = ( x ~ ) ~ ( x  - x')[(& 1)2 - ( d ~ ~ ) ~ ]  + 2 dx3 dx4. (3.40) 

To obtain further metrics of this type we choose 12=const. The flatness conditions 
R12" = R I 3 3 2  = R1331= R 2 3 3 2  = 0 yield the new forms: 

ds2=[1+(x3)2][(dx')2+(d~2)2]+2 dx3 dx4 

- [ ( x ' ) ' +  ( ~ ~ ) ~ ] / [ 1 +  ( x ~ ) ~ ] ( ~ x ~ ) ' ,  (3.41) 
ds2 = ~ ~ [ ( d x l ) ~ + ( d x ~ ) ~ ] + 2  dx3 ~ x ~ + [ ( x ' ) ~ + ( x ~ ) ~ ] ( ~ x ~ ) ' / ~ x ~ ,  (3.42) 

ds2 = ( x ~ ) ~ [ ( ~ x ' ) ~  + ( d ~ ~ ) ~ ] + 2  dx3 dx4+ (ax' + b ~ ' ) ( d x j / x ~ ) ~ .  (3.43) 

For systems of type [G2] the Hamilton-Jacobi equation is 

Q-'[gg W: + 13 W: + 2 W3 W4 + (~213 + g3fi) W f ]  = E (3.44) 

where Q = K3 + 13v2 + g3ri and the conditions for Helmholtz separability are 

d x l x l  In Q = 0, l s i < j S 3 .  

These conditions have the solutions 

(a) r l = v 2 = 0 ,  (b) K 3 = ~ 2 = 0 .  

In case (a) if we require that g3 and l3  are not constants we can apply the flatness 
conditions R 2 3 3 2  = RI331 = 0 to obtain the metrics 

ds' = ( ~ ~ + B ) ( d x ~ ) ~ + ~ ~ ( d x ~ ) ' + 2  dx3 dx4 

+ [ ( x ~ ) ~ / ~ x ~ +  ( x ' ) ~ / ~ ( x ~ + B ) ] ( ~ x ~ ) ~ ,  B # 0 ,  (3.45) 
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ds2= ( ~ ~ + B ) ( d x ’ ) ~ + [ A ~ + ( x ~ ) ~ ] ( d ~ ~ ) ~ + 2  dx3 dx4 

+ [ ( x ’ ) ~ / ~ ( x ~  + B) - (x2l2/(A2 + ( ~ ~ ) ~ ) ] ( d x 3 ) ~ ,  A, B # 0, (3.46) 

ds2 = (x3+B)(dx1)’+(x3 dx2)’+2 dx3 dx4 

+[Ax2/(x3)’ +x1/4(x3 + B)](dx3)’, A, B # 0, (3.47) 

- ( U ~ ( X ~ ) ~ / [ ( X ~ + ~ ) ~ + ~ ~ ] + ( X ~ ) ~ / [ ( X ~ ) ~ +  l ] } ( d ~ ~ ) ~ ,  b Z 0 ,  a f l ,  

ds2=[(x3+b)2+a2](dx1)2+[1+(x3)2](dx2)2+2dx3 dx4 

(3.48) 

ds2= (x3+b)’(dx1)’+[1 + ( ~ ~ ) ~ ] ( d x ~ ) ~ + 2  dx3 dx4 

+{-(~’)~/[1+ (x~)~]+Ax’ / (x ’+  b)2}(d~3)2, A,b#O, (3.49) 

ds2= ( ~ ~ + b ) ~ ( d x ~ ) ~ f ( x ~  dx2)’+2 dx3 dx4+[Ax1/(x3+ b )2+B~2/ (~3)2 ] (d~3)2 .  
(3.50) 

In case (b) the flatness conditions R 2 3 3 2  = R1331= 0 lead to the metrics 

ds2 = ( ~ x ’ ) ~ + x ~ ( ~ x ~ ) ~ + [ A x ~ + ( x ~ ) ~ / ~ x ~ ] ( ~ x ~ ) ~ + ~  dx3 dx4, AZO, (3.51) 

ds2= (dx’)’+(l + ( x ~ ) ~ ) ( ~ x ~ ) ~ + { A x ~ - ( x ~ ) ~ / [ ~ + ( x ~ ) ~ ] } ( ~ x ~ ) ~ + ~  dk3 dx4, A # O ,  
(3.52) 

d ~ ’ = ( d x ’ ) ~ + ( x ~  d x 2 ) 2 + [ A ~ 1 + B x 2 / ( x 3 ) 2 ] ( d ~ 3 ) 2 + 2  dx3dx4. (3.53) 

The possibility l3 = constant from case (a) is included here. If both l3  and g3 are constant 
there are two ignorable variables. 

It can be checked that the general type [G3] system leads to no new separable 
coordinates in flat space. 

3.8. Forms of type H: No ignorable variables 

Systems of this type are necessarily orthogonal. 

4. Non-orthogonal coordinate systems for which A& = A# is separable 

Here we examine the coordinate systems, separation equations and operator charac- 
terisation of the differential forms classified in the previous section. We give these 
results in summarised form, working out some particular cases in detail for purposes of 
illustration. A complete and detailed discussion of all systems would lengthen this 
section unnecessarily. We group the various coordinate systems into classes which are 
closely related. In all but the last case the systems we find correspond to the embedding 
of the heat equation into the complex Helmholtz equation. 

4.1. For the differential form (3.411, type [Gl], the relation between the separable and 
Cartesian coordinates is 

z’=x’[l+(x 3 ) 2 3 1/2 , z2=x2[1+(x 3 ) 2 3 1/2 , 
(4.1) 

z 3  - iz4 = x4 -4x’[(x’)’+ (x212], z3+iz4=2x3. 
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The complex Helmholtz equation reads 

A4$ ={(1 + ( X ~ ) ~ ) ~ ~ [ ( ~ ~ ~ ) ~ + ( ~ ~ ~ ) ~ ] + ( X ~ ~ ~ ~ ) ~ + ( X ~ ~ ~ ~ ) ~ + ~ ~ ~ ~ ~ ~ } ( / I  

where we have sought a solution of the form (/I = IIi=l E k ( x k ) .  The operators Li(j  = 
1 ,2 ,3 )  whose eigenvalues are the separation constants l j ,  are 

(4.6) 

This coordinate system corresponds to an embedding of the heat equation (2.7) into the 
four-dimensional Helmholtz equation. In the coordinates given above we have clearly 
redefined the variable U in terms of the new ignorable variable x4. (Note that any 
transformation x4+  x4+f(x1, x 3 ,  x3) still leaves x4 ignorable.) This however means 
that if we restrict ourselves to (2.7) then we normally must consider R-separable 
coordinate systems. Embedded in four dimensional complex space, (2.7) corresponds 
to choosing eigenfunctions of P3 + iP4 with eigenvalue ip. The remaining separation 
constants for all heat equation coordinate systems are second order symmetric opera- 
tors in the enveloping algebra of the Galilei subgroup of ~ ( 4 )  with generators 
PI ,  Pz, 41 +U4,, 1 3 2  + i142, IlZ. Similar separable coordinates are obtained by substi- 
tuting for x1 and x2 all inequivalent complex coordinates for which the harmonic 
oscillator equation (4.3) admits a separation of variables. We give the change of 
variables together with the operator Lz specifying these various systems. For all of 
them 

L~ = P:+P: +$(131 +i14112 + f ( 1 3 ~ + i 1 4 ~ ) ~ .  

(2) x1-*x1cosx2, x 2 + x 1  sinx’, L2 = 1 : 2 .  (3.14) 

(3) x 1  -* (x1x2)1/2, xZ+[ (x l - l ) ( l -x  )] ) 

L ~ = P : + I : ~  + $ ( I ~ ~ + ~ I ~ ~ ) ’ .  (3.31) 

(4) x1+ix2+(x 1 x 2 ) 1/2 , 
’ (3.32) 

L~ = -1fZ + (pl + ip2)’ +$[13, + i14l + i(132 + i ~ ~ ~ ) ] ’ .  

2 1/2 

x1  -ix2 + ( x * / x ~ ) ~ / ~ +  ( X ’ / X ~ ) ~ ’ ~  

4.2. A related class of coordinate systems follows from the differential form (3.42). A 
suitable choice of coordinates is 

21 = x1(x3)1/2, 

z 3  -iz4 = x4 -i[(x1lZ+ ( x ~ ) ~ ] ,  

L 1 -1 - 4{P1, 131 + i14lI + i { ~ 2 ,  1 3 2  + i ~ d ,  

L -1. 

zz = x2(x3)1/2 
(4.7) 

23+i24 = 2 2 .  

The defining operators Li are 

L Z  = i { ~ 2 ,  1 3 2  + i ~ z ) ,  

(4.8) 3 - Z(P3 +iP4). 
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(Here, {A, B }  = AB +BA.)  Again this system corresponds to an embedding of (2.7) 
into the Helmholtz equation (1.1). Similar coordinates are obtained in the same way as 
for systems of type 1. For all these possibilities 

L~ =${P~, 131+i141}+${PZ, 1~~+i1~2}. 

(2) x l + x l  cosx2, x2+x1  sin x 2 ,  L2 = 1 : 2 .  (3.15) 

(3) x’+(x x 1 , 

L~ =I& +${PI, 1 3 1  +i1~1}. 

(4) 
L~ = -1f2 - ${p1 + iP2, 131 + i~41+  i(132 + i42)). 

2 1/2 x2+[(x1-l)(l-x )] , 1 2 1/2 

(3.33) 

(3.34) 
x1+ix2+(x 1 x 2 ) 1/2 , x 1  -ix2 + (x1/x2)1/2+(x2/x1)1’2y 

4.3. For this class the prototype differential form is (3.43). A suitable choice of 
coordinates is 

z1 = x1x3- b/4x3, z 2  = x2x3-a/4x3, 
(4.9) 

z3 -iz4 = x4-$x3[(x1)’+ (x2)’]- (ax2 + bx1)/4x3+ ( a 2 +  b2)/96(x3I3, 

z3+iz4=2x3.  

The operators Li are 

L1 = $(I31 +i141)2-~bP1(P3+iP4)+$(42+i14~)2--aP2(P3+iP4), 

L~ = $ ( I 3 2  + i1~2)~ -fa&(P3 + ip4), 
(4.10) 

This coordinate system again corresponds to an embedding of (2.7) into the Helmholtz 
equation. Similar coordinate systems are obtained by substituting for x1 and x2 all 
inequivalent complex coordinates for which the linear potential Schrodinger equation 

[a,1,1 + a ~ ~ ~ ~ - ( a x 2 + ~ x 1 ) ~ ~ ] @ =  11@, @ = E1 E2 (4.11) 

admits a separation of variables. In considering these possibilities it may be that the 
constants a, b must have certain values, e.g. a = O .  We now specify the remaining 
systems by giving the change of variables together with the operator LZ and restrictions 
on a, b, if any. For all these operators 

L -1 
3 - 2 ( 4  + iP4). 

L~ = $(I31 +i141)2+a(132+i142)2-$b~1(~3+i~4)--a~2(~3+i~4). 

All remaining systems correspond to a = b = 0: 

(3.16) 2 x2+x1  sinx’, L2 = 1 1 2 .  

x2+[(x1-1)(1-x 2 )] 1/2 , 

2 

1 2 1/2 

(4) x l + x l c o s x  , 

( 5 )  X 1 + b  x ) Y 

L~ = I:, +$(z~~ + i141)2, (3.37) 
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x - ix2 + (x l/x2)ll2 + (x2/x 1)112 1 2 1/2 (6) x1+ix2+(x x ) , 
L ~ = I : ~  + $ I ~ ~ + I ~ ~ + ~ ( I ~ ~ + I ~ ~ ) ] ~ .  

(3.38) 

4.4. For the next class the prototype differential form is (3.5). A suitable choice of 
coordinates is 

2 2 1 3 2  
t1 = x1 -ab(X3)2, 

z - i t  = x4 - +(ax2 + bx ')x3 + &(a2 + b2)(x3)3, 

2 = x  -aa(x ) , 
(4.12) 3 t 3 + i t 4 = 2 x .  

The operators Li are 

L~ = P: + ia{p3 + ip4, 123 + i124). L 3 -1. - Z(P3 + p 4 ) 9  (4.13) 

with L1 given below. This system again corresponds to an embedding of the heat 
equation into (2.1). Similar coordinates are obtained in the same way as for systems of 
type 3. For all these systems 

L~ = P ? + P ~ ~ + Q ~ { P ~ + ~ P ~ ,  I13 f i114)+$~{~3+i~4 ,  123+iI24), (4.14) 

(3.3) 

(3.4) 

(2) x + t[(X lI2 - (x2I2ly x2  + x1x2, a =o,  
L~ = - { I ~ ~ ,  p2} +Qb(132 + i14212. 

(3) x1  +ix2++(x1 -x2)2, x1 - ix2 + x + x2, a = -ib, 

L~ = f { ~ ~ ~ ,  ~ ~ - i ~ ~ } - a ( ~ ~ + i ~ 2 ) ~ + ~ b [ 1 3 1 + i 1 ~ ~ - i ( 1 ~ ~ + i 1 ~ ~ ) ] ~  

+ {P3 + iP4, 113  + i1Z3 + i(I14 + i1Z4)}. 

The remaining systems correspond to U = b = 0. 
2 x2+x1s inx2 ,  L2 = 1 1 2 .  

(4) (typeB) x l + x l c o s x ,  2 

( 5 )  x'+ x 1 Y 

(6) 
Lz = I:2 + (P1+ iPJ2.  

Lz = +Pi. 1 2 112 x2+[(x1-1)(1-x 2 )] 1/2 y 

x + ix + (x 'x 2, 1/2, x - ix2 + (x '/x2) 1/2 + (x 2/x l)l'zy 

For these last two systems see the remark following equation (3.4). 

4.5. These systems correspond to type [G2] forms. The coordinates are 

t1 =Fk(X', x3), z2  =&(x2, x3), 
(4.15) 

2 3  - iz4 = x4 + Hk (x l, x3) +H,(x2, x3), t 3 + i t 4 = 2 x 3 ,  

where the functions 4, Hk are one of the four possibilities 

(i) ~ ~ ( u , x ~ ) = u - ~ u ~ ( x ~ + ~ ~ ) ~ ,  

Hl(U, x3) =3ulu(X3+b1) -~u: (x3+b1)3 .  

(ii) F~(u, x3) = u(x3+62)--4ru2/(x3+b2), 

&(U, x3) = 4 x 3  + b2)u2 - i U 2 U / ( X 3  + bz) + &Ut/ (X '  + b$. 

(iii) F~(u, x3) = u[(x3 + b3l2+ u Y 2 ,  

(iv) F~(u, x3) = u(x3 + b41112, 

H3(u, x3) = -$(x2+b3)u 2 . 
H4(u, x3) = 0. 



Non-orthogonal separable coordinates 1145 

Here the numbers ai ( j  = 1,2,3)  and bk ( k  = 1 ,2 ,3 ,4 )  are arbitrary. In certain 
instances when j = k in the coordinates and the constants are equal then we recover 
systems already included in types 1-4. Coordinate systems of this type correspond to 
the embedding of two different separable systems for the equation e,, +io, = @e into 
(2.7). These systems were not found in all generality in our previous analysis of (2.7), 
(Boyer et a1 1975) as our earlier notation of separability was inadequate. We illustrate 
with a non-trivial example. Consider the metric (3.46). The coordinates are 

3 2 1/2 z1 =x1(x3+B)'/', z2=x2[AZ+(x ) 3 , 
(4.16) 

z 3  + iz4 = 2x3, 4 1 1 2  1 3  2 2  z3- iz4=x -S(X ) -TX (X ) , 

and the Helmholtz equation assumes the form 

A4+ ={(x3+ B)-l[aXlx1 - ~ X ' ~ , ~ ) ~ ] + [ A ~ + ( X ~ ) ~ ] - ~ [ ~ , ~ , ~ + ( ~ ~ X ~ ~ , ~ ) ~ ] + ~ ~ , ~ , ~  
(4.17) 

+ [[2(x3 + B)]-' + x3/[A2 + (~~)~]]8,4}$ = A+. 

The defining operators are 

~1 = 4 ( ~ 3 + i ~ 4 ) ,  L2=${Z31+iZ41, P1}+BP:, L3 = P: +iA2(Z32 + iZ42)'. 
(4.18) 

4.6. These systems correspond to differential forms of type E. We give the details for 
one case and list some of the coordinates for other cases. Consider the differential form 
(3.28). A suitable choice of coordinates is 

z1 + iz2 = x1x2 -$(x2)' + 2x4, 1 2 1  z -iz = x ,  
2 (4.19) 

z3+iz4 = x1x2-~~x')2+2x3,  z 3 - i z 4 = x .  

The complex Helmholtz equation has the form 

The defining operators are 

L1 = P1 - iP2, 

L~ = P: + P: + ${I24 + izZ3 + i(114 + i1~3) ,  P I  - i P 2  + ~3 - i ~ 4 ) .  

L2 = P3 - iP4, 
(4.21) 

(2) For metric (3.29) the coordinates read 

z1-iz2=2x 1 2  x , 
z3+iz4=x1,  

z1 +iz2 = x1x3 -(4x1)-', 

z3-iz4=-$x2/x1-2x 2 3 1  x x +2x4, 

L Z  = t[z24 + iz14 + i(~23 + ills)] 

and the defining operators are 

L1=P3-iP4, 

L~ = -(zI4 + i~13)'- (124 + i123Y - $ ( P I  - iP2) (P3  - i ~ 4 ) .  

(3) For the metric (2.25) a suitable choice of coordinates is 

z1+iz2 =x1x3-$x2/x1, z 1 2  -iz =2x1x2, 

z3-iz4 = xl, z3+iz4=-2x 1 2 3  x x +2x4. 

(4.22) 

(4.23) 

(4.24) 
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The operators are 

L1= P3-iP4, 

L~ = -(I41 + i ~ ~ ) ~ - ( 1 4 2 + i 1 3 2 ) ~ - - ( ~ 1  - i ~ z ) ' .  

L~ = $(I24 + ill4 + i(123 + iI13)), 

(4) For the metric (3.26) a suitable choice of coordinates is 
1 2 1  z1 + iz2 = X ' ( X ~ ) ~  + 2x4, 

z 3 + i ~ 4  = -x2(x1)2+2x3, 

z -iz = x  , 
3 4 2  z -iz = x  . 

The operators are 

L1=P1-iPz, L2 = P3 - iP4 ,  

L~ = P: + P: + [ 4 1 +  124 + i(14~ + 123)12. 

( 5 )  For the metric (3.27) the coordinates are 
2 1  3 4 1  z1-iz2=2x x , 

2 + iz2 = x ' x  - (4x ')-l+ 4x2, 

z - i t  = x  , 

+ iz4 = -4x2/x - 2x3x2x - 4(x2)' + 2x4, 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

and the operators are 

L 1 = P3 - p 4 9  

L~ = - ( z 4 1 + i 1 3 1 ) 2 - ( ( 1 4 2 + i 1 3 2 ) 2 + ~ { ~ 1 - i i p 2 ,  131+124+i(114+123)) 

L2 = 124  + i123 + i(l14 + iI13), 
(4.29) 

- $(PI - *2)(P3 - 9 4 ) .  

(6) For the metric (3.19) coordinates are 

z1 + iz2 = (x' -x2)x4, 

z 3  +iz4 = 2x1x2x4 + 2x3, 

1 2  z'-iz2=-2x x , 
z -iz = x  - x ,  

(4.30) 
3 4 1 2  

and the operators are 

L~ = $[124 + i123 + i(114 + i1~3)], 

L~ = (124 + i12312 + (114 + i113)~ + &112, PI - ~PJ. 

L2 = P3 - iP4, 
(4.31) 

The remaining systems are more complicated. We give here a typical example. For 
the metric (3.20) a suitable choice of coordinates is 

1 2 2 1  4 1 2  z -iz = x  - x ,  z3-iz = X  + x ,  

z1 + iz2 = (x' + x2)x4 - 2x3 + G(x', x'), 

z 3  + iz4 = (xl - x2)x4 + H(X l ,  x'). 

(4.32) 

Where the functions G and H have the form 

G = A[(x2)' - (x')']- $B(xl + x2)[1 + 2 ln(xl - x2)] - C ln(xl - x ' )  

H = -$A(xl - x2)' + $B(xl - x2)[1 - 2 ln(x - x2)]. 

The separation equations and operators describing separation can be computed but the 
results are rather long formulae. We note, however, that all such coordinate systems 
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generate new R-separable solutions of (2.7) as they correspond to systems related to 
the embedding of this equation into the Helmholtz equation. 

4.7. Finally we list the single non-orthogonal system that does not correspond to an 
embedding of (2.7) into the Helmholtz equation. The differential form is (3.6), 

ds = :(x - x ')[(dx / X  1)2 - (dx ' / x  2)2] + 2~ 'X dx dx4 - ( X  + x 2 ) ( d ~  4)2. (4.33) 

A suitable choice of coordinates is 

z ' + i z 2 = ( x  1 x 2 ) 1/2 coshx4, 

z ~ - ~ ~ ~ = [ ( x ~ / x ~ ) ~ / ~ + ( x ~ / x ~ ) ~ / ~ ] c o s ~ x ~ - x ~ ( x  1 x 2 ) 1/2  sinh x4, 
z3 - i z4=  - [ ( ~ ~ / x ~ ) ~ / ~ + ( x ~ / x ~ ) ~ / ~ ] s i n h x ~ + x ~ ( x  1 x 2 ) 1/2 coshx4. 

z 3 + i z 4 = ( x  1 x 2 ) 1/2 sinhx4, 

(4.34) 

The Helmholtz equation becomes 

1\41 = {4(x1 - ~ ~ ) - ' [ ( ~ ' ) - ' a , l ( ( ~ ' ) ~ a , l )  - ~ - ~ a , 2 ( ( ~ ~ ) ~ a , 2 ) ]  

(4.35) +[(x1+x2)/(x 1 2 2  x ) ] ~ x ~ x 3 + 2 ( x 1 x 2 ) - 1 ~ , ~ , ~ } ~  = A$, 

and the defining operators are 

L1 =113+i123+i(114+i1~4), 

L~ = 

This completes our treatment of the non-orthogonal systems for which A 4 4  = A$ admits 
a separation of variables. In all but one case the coordinate systems correspond to 
R -separable systems for the Schrodinger equation (2.7) embedded in the Helmholtz 
equation. We have systematically found all R -separable systems for (2.7) by embed- 
ding it in (2.1). 

L2 = U 4 1  + 1 2 3 ) ,  

+ 1i4 + (pl + i ~ 2 ) ~  + ( ~ 3  + ip412 - (112,134) - ( 1 3 ~  + 142)' - (123 + 141)~ .  
(4.36) 
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